Handling Model Uncertainty and Multiplicity in Explanations via Model Reconciliation

Sarath Sreedharan and Tathagata Chakraborti and Subbarao Kambhampati

School of Computing, Informatics, and Decision Systems Engineering
Arizona State University, Tempe, AZ 85281 USA
{ ssreedh3, tchakra2, rao } @ asu.edu

Abstract

Model reconciliation has been proposed as a way for an agent to explain its decisions to a human who may have a different understanding of the same planning problem by explaining its decisions in terms of these model differences. However, often the human’s mental model (and hence the difference) is not known precisely and such explanations cannot be readily computed. In this paper, we show how the explanation generation process evolves in the presence of such model uncertainty or incompleteness by generating conformant explanations that are applicable to a set of possible models. We also show how such explanations can contain superfluous information, and how we can reduce such redundancies using conditional explanations to iterate with the human to attain common ground. Finally, we will introduce an anytime approach to this problem, and empirically demonstrate the trade-offs involved in the different forms of explanations in terms of the computational overhead for the agent and the communication overhead for the human. We illustrate these concepts in three well-known planning domains as well as in a demonstration on a robot involved in a typical search and reconnaissance scenario with an external human supervisor.

In (Chakraborti et al. 2017) it was shown how a robot can explain its decisions to a human in the loop who might have a different understanding of the same problem (either in terms of the agent’s knowledge or intentions, or in terms of its capabilities). These explanations are intended to bring the human’s mental model closer to the robot’s estimation of the ground truth – this is referred to this as the model reconciliation process, by the end of which a plan that is optimal in the robot’s model is also estimated to be optimal in the human’s updated mental model. It was also shown how this process can be achieved successfully while transferring the minimum number of model updates possible via what are called minimally complete explanations or MCEs.

Explanations of this form have been inspired by work (Lombrozo 2006; 2012; Miller 2017) which identify properties of explanations in terms of selectivity, contrastiveness and mental modeling of the explainee. Such techniques can thus be essential contributors to the dynamics of trust and teamwork in human-agent collaborations by significantly lowering the communication overhead between agents while at the same time providing the right amount of information to keep the agents on the same page with respect to their understanding of each others’ tasks and capabilities – thereby reducing the cognitive burden on the human teammates and increasing their situational awareness.

This process of model reconciliation is illustrated in Figure 1. The robot’s model, which is its estimate of the ground truth, is represented by \mathcal{M}^R (note: “model” of a planning problem includes the state and goals information as well as the domain or action model) and $\pi_{\mathcal{M}^R}$ is the optimal plan in it. A human H who is interacting with it may have a different model \mathcal{M}^H of the same planning problem, and the optimal plan $\pi_{\mathcal{M}^H}$ in the human’s model can diverge from that of the robot’s leading to the robot needing to explain its decision to the human. As explained above, an explanation is an update or correction to the human’s mental model to a new intermediate model \mathcal{M}^R_h where (according to cost or some other suitable measure of similarity) the optimal plan $\pi_{\mathcal{M}^R_h}$ is equivalent to the original plan $\pi_{\mathcal{M}^R}$.

Figure 1: The model reconciliation process in case of model uncertainty or multiple explainees.
However, this process is only feasible if inconsistencies of the robot’s model with the human’s mental model is known precisely. Authors in (Chakraborti et al. 2017) make this assumption, which is often hard to realize in practice. Instead, the agent may end up having to explain its decisions with respect to a set of possible models which is its best estimation of the human’s knowledge state learned in the process of interactions (Nguyen, Sreedharan, and Kambhampati 2017; Bryce, Benton, and Boldt 2016). In such a situation, the robot can, of course, call upon the previously mentioned services to compute MCEs for each possible configuration. However, this can result in situations where the explanations computed for individual models independently are not consistent across all the possible target domains. In the case of model uncertainty, such an approach cannot guarantee that the resulting explanation will be an acceptable explanation in the real domain. Instead, we want to find an explanation such that $\forall i \pi_{\delta M}^{\rightarrow} \equiv \pi_{\delta M}^{\rightarrow}$. This is a single model update that makes the given plan optimal (and hence explained) in all the updated domains (or in all possible domains). At first glance, it appears that such an approach, even though desirable, might turn out to be prohibitively expensive especially since solving for a single MCE involves search in the model space where each search node is an optimal planning problem. However, it turns out that the exact same search strategy can be employed here as well by modifying the way in which the models are represented and the equivalence criterion is computed during the search process. Thus, in this paper, we –

1. show how uncertainty over the human mental model can be represented in the form of annotated models;
2. outline how the concept of an MCE becomes one of conformant explanations in the revised setting and the search for these can be compiled to the original MCE search;
3. show how superfluous information in conformant explanations can be reduced interactively via conditional explanations which can be computed in an anytime manner;
4. demonstrate how the model reconciliation process in the presence of multiple humans in the loop can be viewed as a special case of uncertain models; and finally
5. illustrate these concepts on a typical search and reconnaissance setting as well as with empirical results on a few well-known benchmark planning domains.

Background

In this section, we provide a brief introduction to classical planning and incompleteness of planning models.

A Classical Planning Problem is a tuple $\mathcal{M} = \langle D, \mathcal{I}, \mathcal{G} \rangle$ with domain $D = \langle F, A \rangle$ – where F is a finite set of fluents that define a state $s \subseteq F$, and A is a finite set of actions – and initial and goal states $\mathcal{I}, \mathcal{G} \subseteq F$. Action $a \in A$ is a tuple $\langle c_a, \text{pre}(a), \text{eff}^+(a) \rangle$ where c_a is the cost, and $\text{pre}(a), \text{eff}^+(a) \subseteq F$ are the preconditions and add/delete effects, i.e. $\delta_M(s, a) = \bot$ if $s \not\models \text{pre}(a)$; else $\delta_M(s, a) = s \cup \text{eff}^+(a) \setminus \text{eff}^-(a)$ where $\delta_M(\cdot)$ is the transition function. The cumulative transition function is given by $\delta_M(s, (a_1, a_2, \ldots, a_n)) = \delta_M(\delta_M(s, a_1), (a_2, \ldots, a_n))$.

This forms the classical definition of a planning problem (Russell and Norvig 2003) whose models are represented in the syntax of PDDL (McDermott et al. 1998). The solution to the planning problem is a sequence of actions or a (satisficing) plan $\pi = \langle a_1, a_2, \ldots, a_n \rangle$ such that $\delta_M(\mathcal{I}, \pi) \models \mathcal{G}$. The cost of a plan π is given by $C(\pi, \mathcal{M}) = \sum_{a \in \pi} c_a$ if $\delta_M(\mathcal{I}, \pi) \models \mathcal{G}$; ∞ otherwise. The cheapest plan $\pi^* = \arg\min_{\pi} C(\pi, \mathcal{M})$ is the (cost) optimal plan. We refer to the cost of the optimal plan in the model \mathcal{M} as $C_{\mathcal{M}}^*$.

In (Nguyen, Sreedharan, and Kambhampati 2017) the authors introduced an update to the standard representation of planning problems to an annotated model or ACPDDL to account for uncertainty or incompleteness over the definition of the planning model. In addition to the standard preconditions and effects associated with actions, it introduces the notion of possible preconditions and effects which may or may not be realized in practice.

An Incomplete (Annotated) Model is the tuple $\mathcal{M} = \langle D, \mathcal{I}, \mathcal{G} \rangle$ with a domain $\mathcal{D} = \langle F, A \rangle$ – where F is a finite set of fluents that define a state $s \subseteq F$, and A is a finite set of annotated actions – and annotated initial and goal states $\mathcal{I} = \langle \mathcal{I}^0, \mathcal{I}^+ \rangle$, $\mathcal{G} = \langle \mathcal{G}^0, \mathcal{G}^+ \rangle$: $\mathcal{I}^0, \mathcal{G}^0, \mathcal{I}^+, \mathcal{G}^+ \subseteq F$. Action $a \in A$ is a tuple $\langle c_a, \text{pre}(a), \text{pre}(a), \text{eff}^+(a), \text{eff}^+(a) \rangle$ where c_a is the cost and, in addition to its known preconditions and add/delete effects $\text{pre}(a), \text{eff}^+(a) \subseteq F$ each action also contains possible preconditions $\text{pre}(a) \subseteq F$ containing propositions that action a might need as preconditions, and possible add (delete) effects $\text{eff}^+(a) \subseteq F$ containing propositions that the action a might add (delete, respectively) after execution.

Each possible condition $f \in \overline{\text{pre}}(a) \cup \text{eff}^+(a)$ also has a probability $p(f)$ associated with it denoting how likely it is to appear as a known condition in the ground truth model – i.e. $p(f)$ measures the confidence with which that condition has been learned. The sets of known and possible conditions of a model \mathcal{M} is called $\mathcal{S}_k(\mathcal{M})$ and $\mathcal{S}_p(\mathcal{M})$ respectively.

An instantiation of an annotated model \mathcal{M} is a classical planning model where a subset of the possible conditions have been realized, and is thus given by the tuple $\mathcal{I}(\mathcal{M}) = \langle D, \mathcal{I}, \mathcal{G} \rangle$ with domain $D = \langle F, A \rangle$, initial and goal states $\mathcal{I} = \mathcal{I}^0 \cup \chi$, $\mathcal{G} = \mathcal{G}^0 \cup \chi$, $\chi \subseteq \mathcal{I}^+$ respectively, and action $A \models a = \langle c_a, \text{pre}(a), \text{pre}(a) \cup \chi \subseteq \overline{\text{pre}}(a), \text{eff}^+(a) \cup \chi \subseteq \text{eff}^+(a), \text{eff}^-(a) \cup \chi \subseteq \text{eff}^-(a) \rangle$. Given an annotated model with k possible conditions, there may be 2^k such instantiations, which forms its completion set (Nguyen, Sreedharan, and Kambhampati 2017).

The Likelihood \mathcal{L} of an instantiation $\mathcal{I}(\mathcal{M})$ of the annotated model \mathcal{M} is given by –

$$\mathcal{L}(\mathcal{I}(\mathcal{M})) = \prod_{f \in \mathcal{S}_p(\mathcal{M})} \mathcal{L}_k(\mathcal{I}(\mathcal{M})) p(f) \times \prod_{f \in \mathcal{S}_p(\mathcal{M}) \cup \overline{\mathcal{S}_k(\mathcal{I}(\mathcal{M}))}} (1 - p(f))$$

Such models turn out to be especially useful for the representation and learning of human (mental) models from observations, where uncertainty after the learning process can
be represented in terms of model annotations as in (Nguyen, Sreedharan, and Kambhampati 2017; Bryce, Benton, and Boldt 2016). Let $\hat{\mathcal{M}}^R_M$ be the culmination of a model learning process and $\{\mathcal{M}^R_H\}$ be the completion set of $\hat{\mathcal{M}}^R_M$. Note that one of these models is the actual ground truth (i.e. the human’s real mental model). We refer to this as $\mathcal{G}(\hat{\mathcal{M}}^R_M)$. The representation itself is general enough to handle all model differences including initial and goal states in addition to precondition/effects. Cases with unknown actions, as long as their existence is known (but possibly uncertain), can just appear with empty conditions if the action is in the robot’s model but not in the human’s (or with a special indicator condition if the action is in the human’s model but not in the robot’s) and are thus subsumed by the current representation. Thus the representation does not preclude situations where the robot is completely unaware of the human mental model (as long as the robot is aware of the list of action names that the human may expect). An approach to capturing this would be to consider all possible predicates as preconditions and effects as in (Bryce, Benton, and Boldt 2016) where authors used this to model the mental model of expert users. A more efficient method to handle empty human model would be to learn or refine an annotated model from training data collected from the human teammate as in (Nguyen, Sreedharan, and Kambhampati 2017). The current work specifically focuses on explanation generation problem once such a model has already been learned.

The Human-Aware Planning Setting

The human-aware planning paradigm (Sreedharan, Chakraborti, and Kambhampati 2017) introduces the mental model of the human in the loop into a planner’s deliberative process, in addition to the planner’s own model in the classical sense. In such settings, when a planner’s optimal plans diverge from human expectations, the planner can attempt corrections to the human’s mental model to resolve the inoptimality by participating in what we call the model reconciliation process. Thus –

A Human-Aware Planning (HAP) Setting is the tuple $\Phi = \langle \mathcal{M}^R, \mathcal{M}^H_H \rangle$, where $\mathcal{M}^R = \langle D^R, T^R, G^R \rangle$ is the planner’s model of a planning problem, while $\mathcal{M}^H_H = \langle D^H, T^H, G^H, \Psi^H \rangle$ is the robot’s (annotated) estimate of the human’s knowledge of the same.

The Model Reconciliation Problem (MRP) is the tuple $\Psi = \langle \pi, \Phi \rangle$, given an MMP Φ, where $C(\pi, \mathcal{M}^R) = C^*_{\mathcal{M}^R}$. A solution to an MRP is the set of model changes \mathcal{E} or an explanation, such that

1. $\hat{\mathcal{M}}^R_H \leftarrow \mathcal{M}^R_H + \mathcal{E}$; and
2. $C(\pi, \mathcal{G}(\hat{\mathcal{M}}^R_H)) = C^*_{\mathcal{G}(\hat{\mathcal{M}}^R_H)}$.

A Minimally Complete Explanation (MCE) is the shortest explanation that satisfies conditions (1) and (2).

Clearly condition (2) is hard to achieve since it is not known with certainty which is the ground truth among all possible models. So we want to preserve (2) for all (or as many) instantiations of the incomplete estimation of the explainee’s mental model. In the following discussion, we are going to show how this can be achieved by modified versions of the original “model-space” MCE-search in (Chakraborti et al. 2017) using annotated models.

Use Case: The USAR Domain

We will now introduce a Urban Search And Reconnaisance (USAR) domain which we will use as an illustrative purposes throughout the rest of the paper. A video demonstrating the different scenarios play out is provided at https://youtu.be/bLqrtffW6Ng and https://youtu.be/hlPTmggRTQA. Here a robot is involved in a typical (Bartlett 2015) disaster response operation, controlled partly or fully by an external human commander. The robot’s job is to infiltrate areas that may be otherwise inaccessible to humans, and report on its surroundings as and when required / instructed by the external, or required by its team. The external has a map of the environment, but this map may no longer be accurate in a disaster scenario - e.g. new paths may have opened up, or older paths may no longer be available, due to rubble from collapsed structures like walls and doors. The robot (internal), however, does not need to inform the external of all these changes so as not to cause information overload of the commander who is usually otherwise engaged in orchestrating the entire operation, and it must do this keeping in mind its estimate of the latter’s mental model which may be uncertain.

In this particular scenario, we have a robot located at P1 (marked in blue), that needs to collect data from point P5. While the human commander understands the goal, she/he is confused about the current status of the scenario. The commander is under the false impression that the paths from P1 to P9 and P4 to P5 are unusable. The human is also unaware of the robot’s inability to use its hands.

While the robot does not have a complete picture of the human’s mental model, it understands that any differences between the models would be related to (1) Path from P1 to P9 (2) Path from P4 to P5 (3) Robot’s ability to use its hands (4) Whether the Robot needs its arm to clear rubble. As far as the robot is concerned, the human model can be one of sixteen possible models (one of which is the human’s actual mental model). The robot can now possibly adopt one of the two approaches; namely, it can try to reduce the uncertainty over the human mental models or try to come up with an explanation that would work in any one of these 16 models. We will call latter explanations Conformant Explanations. For a given set of possible mental models, we will define a conformant explanation as one that can explain the plan to the human irrespective of their actual mental model (provided it lies in the set of possible models). In the above scenario, a conformant explanation for the optimal robot plan (marked in blue) is given as follows –

remove-known-INIT-has-add-effect-hand_capable
add-annot-clear_passage-has-precondition-hand_capable
remove-annot-INIT-has-add-effect-clear_path P1 P9

Notice that the second explanation (regarding the need of the hand to clear rubble) was already known to the human and was thus superfluous information. Now we will move onto formally define conformant explanations and will also introduce an algorithm to generate such explanations.
Robustness of models where it is a valid explanation. Formally, given the above discussion, we define robustness as possibly superfluous information. A demonstration is attached in the supplementary materials.

Figure 2: USAR scenario with an internal robot and an external human. The robot plan is marked in blue, uncertain parts of the human model are marked with red question marks. A demonstration is attached in the supplementary materials.

Conformant Explanations

Given the above discussion, we define robustness of an explanation for an incomplete model as the probability of models where it is a valid explanation. Formally, robustness of an explanation \(\mathcal{E} \) for an MRP \(\Psi = \langle \pi, (\mathcal{M}^R, \{\mathcal{M}^R_i\}) \rangle \) is given by:

\[
R(\mathcal{E}) = \sum_{i}(\tilde{\mathcal{M}}^R_i) \cdot C(\pi, (\tilde{\mathcal{M}}^R_i)) \cdot C_{\tilde{\mathcal{M}}^R_i}(I(\tilde{\mathcal{M}}^R_i))
\]

A Conformant Explanation is such that \(R(\mathcal{E}) = 1 \).

This means a conformant explanation ensures that the given plan is explained in all the models in the completion set of the human model. The above example in the USAR domain is in fact such an explanation.

MRP with Model Uncertainty – \(\mathcal{M}_{\text{max}} \) & \(\mathcal{M}_{\text{min}} \)

We begin by defining two models – the most relaxed model possible \(\mathcal{M}_{\text{max}} \) and the least relaxed one \(\mathcal{M}_{\text{min}} \). The former is the model where all the possible add effects (and none of the possible preconditions and deletes) hold, the state has all the possible conditions set to true, and the goal is the smallest one possible; while in the latter all the possible preconditions and deletes (and none of the possible adds) are realized and with the minimal start state and the maximal goal. This means that, if a plan is executable in \(\mathcal{M}_{\text{min}} \), it will be executable in all the possible models. Also, if this plan is optimal in \(\mathcal{M}_{\text{max}} \), then it must be optimal throughout the set. Of course, such a plan may not exist, but we are not trying to find one either. Instead, we are trying to find a set of model updates which when applied to the annotated model, produces a new set of models where a given plan is optimal. In providing these model updates, we are in effect reducing the set of possible models, to a smaller set. The new set need not be a subset of the original set of models but will be equal or smaller in size to the original set. For any given annotated model, such an explanation always exists (equal to the entire model difference in the worst case), and we intend to find the smallest one. \(\mathcal{M}^R_{\text{opt}} \) thus affords the following two models –

\[
\mathcal{M}_{\text{max}} = \langle D, I, G \rangle \text{ with domain } D = \langle F, A \rangle \text{ and }
\]

- initial state \(I \leftarrow I^0 \cup I^+ \); given \(\pi \)
- goal state \(G \leftarrow G^0 \); given \(\pi \)
- \(\forall a \in A \)
 - pre \((a) \leftarrow \) pre \((a) \); \(a \in \pi \)
 - eff \(^+ (a) \leftarrow \) eff \(^+ (a) \) \(\cup \) eff \(^- (a) \); \(a \in \pi \)
 - eff \(^- (a) \leftarrow \) eff \(^- (a) \); \(a \in \pi \)

\[
\mathcal{M}_{\text{min}} = \langle D, I, G \rangle \text{ with domain } D = \langle F, A \rangle \text{ and }
\]

- initial state \(I \leftarrow I^0 \); given \(\pi \)
- goal state \(G \leftarrow G^0 \cup G^+ \); given \(\pi \)
- \(\forall a \in A \)
 - pre \((a) \leftarrow \) pre \((a) \) \(\cup \) pre \(^- (a) \); \(a \in \pi \)
 - eff \(^+ (a) \leftarrow \) eff \(^+ (a) \); \(a \in \pi \)
 - eff \(^- (a) \leftarrow \) eff \(^- (a) \) \(\cup \) eff \(^- (a) \); \(a \in \pi \)

As explained before, \(\mathcal{M}_{\text{max}} \) is a model where all the positive conditions hold and it is easiest to achieve the goal, and vice versa for \(\mathcal{M}_{\text{min}} \). Note that these definitions might end up creating inconsistencies in the models (e.g. in an annotated model for the BlocksWorld domain, the definition of unstack action may have add effects to make the block both holding and ontable at the same time), but the model reconciliation process will take care of these.

Proposition 1 For a given MRP \(\Psi = \langle \pi, (\mathcal{M}^R, \{\mathcal{M}^R_i\}) \rangle \), if the plan \(\pi \) is optimal in \(\mathcal{M}_{\text{max}} \) and executable in \(\mathcal{M}_{\text{min}} \), then conditions (1) and (2) hold for all \(i \).

This now becomes the new criterion to satisfy in the course of search for an MCE for a set of models.

MEGA*-Conformant

Similar to (Chakraborti et al. 2017) we define a state representation over planning problems with a mapping function \(\Gamma : \mathcal{M} \rightarrow \mathcal{F} \) which represents any planning problem in the new state space by transforming every condition (including the possible conditions) in the model of a planning problem into a predicate. The set \(\Lambda \) of actions contains unit model change actions \(\lambda : \mathcal{F} \rightarrow \mathcal{F} \) which make a single change to a domain at a time, as defined in (Chakraborti et al. 2017).

The proposed search procedure is presented in Algorithm 1. We start the search by first creating the corresponding \(\mathcal{M}_{\text{max}} \) and \(\mathcal{M}_{\text{min}} \) model for the given annotated model
Algorithm 1 MEGA*-Conformant

1: procedure MCE-SEARCH
2: Input: MRP (π∗, (M∗, aM∗))
3: Output: Explanation E MCE
4: Procedure:
5: while True do
6: c_list ← Priority_Queue()
7: π̂R ← π∗
8: Mmax, Mmin ← (aM∗), (M∗)
9: fringe.push((Mmin, Mmax, {}, priority = 0))
10: while fringe.size do
11: (Mmin, Mmax, E), c ← fringe.pop()
12: if C(π̂R, Mmax) = C∗Mmax ∧ \(\hat{\delta}(\Gamma(M_{min}), \pi^*_{R})\) \(\subseteq \mathcal{S}_{M_{min}}\) then
13: return E
14: else
15: c_list ← c_list \ (Mmax, Mmin)
16: for f ∈ \(\Gamma(M_{min}) \cup \Gamma(M_{max})\) \ Γ(M∗) do
17: \(\lambda \leftarrow \langle 1, \{\hat{M}_{min}, \hat{M}_{max}\}, \{f\}\rangle\)
18: if \(\hat{\delta}(\Delta M_{max}, \hat{M}_{max}) \ (\hat{\delta}(\Delta M_{min}, \hat{M}_{min}), \lambda)\) \(\notin\) c_list then
19: fringe.push((\Delta M_{max}, \hat{M}_{max}) (\hat{\delta}(\Delta M_{min}, \hat{M}_{min}), \Gamma(M_{max})), λ), E \cup λ, c + 1)
20: for f ∈ \(\Gamma(M_{min}) \cup \Gamma(M_{max})\) \ Γ(M∗) do
21: \(\lambda \leftarrow \langle 1, \{M_{min}, M_{max}\}, \{f\}\rangle\)
22: if \(\hat{\delta}(\Delta M_{max}, \hat{M}_{max}) \ (\hat{\delta}(\Delta M_{min}, \hat{M}_{min}), \lambda)\) \(\notin\) c_list then
23: fringe.push((\Delta M_{max}, \hat{M}_{max}) (\hat{\delta}(\Delta M_{min}, \hat{M}_{min}), \Gamma(M_{max})), λ), E \cup λ, c + 1)

\(aM^∗_{R}\). While the goal test for the original MCE only included an optimality test, here we need to both check the optimality of the plan in \(M_{max}\) and verify the correctness of the plan in \(M_{min}\). As stated in Proposition 1, the plan is only optimal in the entire set of possible models if it satisfies both tests. Since the correctness of a given plan can be verified in polynomial time with respect to the plan size, this is a relatively easy test to perform.

The other important point of difference between the algorithm mentioned above and the original MCE is how we calculate the model update difference between the robot model and \(M_{min}\) and the difference between the robot model and \(M_{max}\). This could potentially mean that the search might end up applying a model update that is already satisfied in one of the models but not in the other. Since all the model update actions are formulated as set operations, the original MRP formulation can handle this without any further changes. The models obtained by applying the model update to \(M_{min}\) and \(M_{max}\) are then pushed to the open queue.

Proposition 2 \(M_{max}\) and \(M_{min}\) only need to be computed once before the search – i.e. with a model update \(E\) to \(M^{R}_{h}\), \(M_{max} \leftarrow M_{max} + E\) and \(M_{min} \leftarrow M_{min} + E\) for the new model set.

Following Proposition 2, these models form the new \(M_{min}\) and \(M_{max}\) models for the set of models obtained by applying the current set of model updates to the original annotated model. This proposition ensures that we no longer have to keep track of the current list of models or recalculate \(M_{min}\) and \(M_{max}\) for the new set.

As we saw in the use case earlier, conformant explanations can contain superfluous information – i.e., asking the human to remove non-existent conditions or add existing ones. Such redundant information can be annoying and may end up reducing the human’s trust in the robot. This can be handled in two ways –

- We increased the cost of model updates involving uncertain conditions relative to those involving known preconditions or effects. This ensures that the search prefers explanations that contain known conditions. By definition, such explanations do not have superfluous information.

- However, sometimes such explanations may not exist. Instead, we can convert conformant explanations into conditional ones. This can be achieved by turning each model update for an annotated condition into a question and only provide an explanation if the human’s response warrants it – e.g. instead of asking the human to update the precondition of clear_passage, the robot can first ask if the human thinks that action has a precondition hand_usable. We will look at such explanations next.

Conditional Explanations

One way of removing superfluous explanations is to engage the human in conversation and ask questions that can reduce the size of the completion set. To this end, we define –

A Conditional Explanation is represented by a policy that maps the annotated model (represented by a \(M_{min}\) and \(M_{max}\) model pair) to either a question regarding the existence of a condition in the human ground model or a model update request. The resultant annotated model is produced, by either applying the model update directly into the current model or by updating the model to conform to human’s answer regarding the existence of the condition.

We can generate these conditional explanations by either performing post-processing on conformant explanations or by performing AND-OR graph search like AO*N (Nilsson 1980). Here each model update related to a known condition forms an OR successor node while each possible condition can be applied on the current state to produce a pair of AND successors. Where the first node reflects a node where the annotated condition holds while the second one represents the state where it does not. So the number of possible conditions reduces by one in each one of these AND successor nodes. This AND successor relates to the answers the human could potentially provide when asked about the existence of that particular possible condition. Note that, this AND-OR graph will not contain any cycles as we only provide model updates that are consistent with the robot model and hence we can directly use the AO*N search here.

MEGA*-Conditional

The possibility of asking humans for clarification on uncertain predicates opens the door to generating potentially cheaper explanations. For example, in the USAR scenario, consider the following exchange –
Algorithm 2 ME$$\text{GA}^*$$–Anytime

1: procedure ANYTIME-EXPLANATION
2: Input: $M(\pi^*,(M^R,\pi^*_{M^R}))$
3: Output: Explanation E
4: Procedure:
5: fringe \leftarrow Stack()
6: $\pi^*_R \leftarrow \pi^*$ \triangleright Optimal plan being explained
7: $M_{max}, M_{min} \leftarrow (M^R_R)$ \triangleright Proposition 2
8: $A \leftarrow \emptyset$ \triangleright Current assumptions
9: fringe.push($\langle M_{min}, M_{max}, A, \{\} \rangle$)
10: while True do
11: \hspace{1em} $\langle \hat{M}_{min}, \hat{M}_{max}, \hat{A}, E \rangle \leftarrow$ fringe.pop()
12: \hspace{1em} if $C(\langle \hat{M}_{min}, \hat{M}_{max} \rangle) \wedge \delta(\hat{M}_{min}, \pi^*_R) \models \forall \hat{M}_{min}$ then
13: \hspace{2em} $A_{valid} \land A_{invalid} \leftarrow$ TEST_ASSUMPTION(A)
14: \hspace{1em} if $A_{invalid} = 0$ then
15: \hspace{2em} return E \triangleright Proposition 1
16: \hspace{1em} else
17: \hspace{2em} UPDATE_STACK(fringe, $A_{valid}, A_{invalid}$)
18: \hspace{1em} end
19: \hspace{1em} for $f \in \{\hat{M}_{min}, \hat{M}_{max}\} \setminus \Gamma(M^R)$ do
20: \hspace{2em} $\lambda \leftarrow (1, \{\hat{M}_{min}, \hat{M}_{max}\}, \{f\})$ \triangleright Removes f from \hat{M}
21: \hspace{2em} $\delta_{M_{min}, \hat{M}_{max}}((\Gamma(\hat{M}_{min}), \Gamma(\hat{M}_{max})), \lambda) \notin c_{list}$ then
22: \hspace{3em} fringe.push($\langle \delta_{M_{min}, \hat{M}_{max}}((\Gamma(\hat{M}_{min}), \Gamma(\hat{M}_{max})), \lambda), E \cup \lambda, \hat{A} \rangle$)
23: \hspace{1em} end
24: \hspace{1em} for $f \in \Gamma(M^R) \setminus \{\hat{M}_{min}, \hat{M}_{max}\}$ do
25: \hspace{2em} $\lambda \leftarrow (1, \{\hat{M}_{min}, \hat{M}_{max}\}, \{f\})$ \triangleright Adds f to \hat{M}
26: \hspace{2em} $\delta_{M_{min}, \hat{M}_{max}}((\Gamma(\hat{M}_{min}), \Gamma(\hat{M}_{max})), \lambda) \notin c_{list}$ then
27: \hspace{3em} fringe.push($\langle \delta_{M_{min}, \hat{M}_{max}}((\Gamma(\hat{M}_{min}), \Gamma(\hat{M}_{max})), \lambda), E \cup \lambda, \hat{A} \rangle$)
28: \hspace{1em} end
29: \hspace{1em} $A \leftarrow A \cup f$ \triangleright Add f to list if f is a possible condition
30: \hspace{1em} $\langle A, E \rangle$. \triangleright Add f to list if f is a possible condition
31: end

Remark. The purpose of the above discussion is to demonstrate how existing notions of conditional and conformant solutions in planning can be adopted for the explanation process as well in the presence of uncertainty over the human mental model. Of course, while there are significant differences between how conditional or conformant explanations work with respect to their planning counterparts, it may be worth exploring the state-of-the-art (Albore, Palacios, and Geffner 2009; Bonet and Geffner 2005) in those fields to develop on the concepts introduced in the paper.

\[\text{if } R \text{ realises the plan is optimal in all possible human models, } \]
\[\text{It does not need to explain further. } \]

Unfortunately, if we used the vanilla AO^* search, it will not produce a conditional explanation that contains this “less robust” explanation as one of the potential branches in the conditional explanation. This is because, if the human had said that the path was free, the robot would need to revert to the original conformant explanation. Thus the cost of the subtree containing this solution will be costlier than the one that only contains the original conformant explanation.

To overcome this shortcoming, we introduce a discounted version of the AO^* search. Where the cost contributed by a pair of AND successors is calculated as

$$\text{min} \{\text{node1.h.val}, \text{node2.h.val}\} + \gamma \times \text{max} \{\text{node1.h.val}, \text{node2.h.val}\}$$

where node1 and node2 are the successor nodes and node1.h.val, node2.h.val are their respective h-values. Here γ represents the discount factor and controls how much the search values short paths in its solution subtree. When $\gamma = 1$, the search becomes standard AO^* search and when $\gamma = 0$, the search myopically optimizes for short branches (at the cost of the depth of the solution subtree). The rest of the algorithm stays the same as the standard AO^* search. We skip the pseudocode due to space limitations (please refer to supplementary material).

Remark. It is interesting to note that in asking questions such as these, the robot is trying to exploit the human’s (lack of) knowledge of the problem in order to provide more concise explanations. This can be construed as a case of lying by omission and can raise interesting ethical considerations. Humans, during an explanation process, tend to undergo this same “selection” process (Miller 2017) as well in determining which of the many reasons that could explain an event is worth highlighting. It is worthwhile investigating similar behavior for autonomous agents.

ME$$\text{GA}^*$$–Anytime

Both the algorithms discussed above can be computationally expensive. However, we can relax the minimality requirement of explanation for shorter explanation generation time. For this we introduce an anytime depth first explanation generation algorithm. Here, for each state, the successor states include all the nodes that can be generated by applying the model edit actions on all the known predicates and two possible successors for each possible condition – one where the condition holds and one where it does not. Once the search reaches a goal state (a new model where the target plan is optimal throughout its completion set), it queries the human to see if the assumptions it has made regarding possible conditions hold in the human mental model (the list of model updates made related to possible conditions). If all the assumptions hold in the human model, then we return the current solution as the final explanation (or use the answers to look for smaller explanations), else continue the search after pruning the search space using the answers provided by the human. The pruning can be performed efficiently by keeping track of all the human answers and enforcing these specifications only at the time of expansion of new nodes. Algorithm 2 presents a depth first search approach for an anytime solution. Here we add an additional variable A to the search node to keep track of the possible assumption that we have made for any given search path. The TEST_ASSUMPTION denotes the function responsible for testing the set of assumptions during the goal test. TEST_ASSUMPTION returns the set of assumptions that were invalidated by the human $A_{invalid}$ and we can return the current search path as a solution if the invalid set is empty. We will use the validated and invalidated assumption to update our current search stack (via the UPDATE_STACK function).

Remark. The purpose of the above discussion is to demonstrate how existing notions of conditional and conformant solutions in planning can be adopted for the explanation process as well in the presence of uncertainty over the human mental model. Of course, while there are significant differences between how conditional or conformant explanations work with respect to their planning counterparts, it may be worth exploring the state-of-the-art (Albore, Palacios, and Geffner 2009; Bonet and Geffner 2005) in those fields to develop on the concepts introduced in the paper.
Evaluations

We have already seen a demonstration of the algorithms in action in the USAR use case. In this section, we will evaluate the algorithms discussed above on three well-known IPC (International Planning Competition 2011) domains. For each domain, we chose five problems (generated through standard problem generators), and for each domain and problem pair, we create a new domain and problem by removing five random predicates. This new domain and problem represents the ground truth human model. Next, we generate the uncertain estimate of this model by moving random predicates into the annotated list. By doing this, we ensure that the ground truth model remains in the completion list of this incomplete model. For these tests, we assume all the possible conditions are equally likely. We will now evaluate each of the above mentioned algorithms using the problems produced before.

Table 1 shows the runtime and the size of the explanations generated by each of the algorithms evaluated on these domain problem pairs. Note that the MEGA*-Conditional was run with γ set to 0.4 and the results for the anytime algorithm only presents the size of the first solution found. Also note that both the MEGA*-Conditional search and the MEGA*-Anytime algorithm expects that it can query the human about its ground truth. So each question that the algorithm comes up with is tested against the ground model. The “Question Size” column represents the number of questions that were produced by the search, where each question is related to a single annotated condition. While the “Explanation Size” column represents the actual explanation presented to the human. Unlike MEGA*-Conditional and MEGA*-Anytime, MEGA* generates no questions but may produce superfluous explanations. Thus, in the “Explanation Size” column for MEGA*-Conformant, we present both the size of the non-superfluous component of the explanation (model updates involving only the known conditions) and the total size of the explanation generated (within parenthesis). The results closely follow intuition. MEGA*-Anytime takes considerably shorter time in most cases, but ends up producing explanations that are longer than the other two algorithms. While MEGA*-Conformant terminates slightly faster than MEGA*-Conditional, the latter produces shorter explanation whenever possible.

Finally, as we mentioned in the introduction, one of the major advantages of compiling the set of possible models into M_{max} and M_{min} is that we no longer need to compute explanations over each individual model in the set of possible models separately (baseline). Table 2 illustrates the significant scale-ups we can achieve as a result of this.

Model Uncertainty versus Multiplicity

We note that, while generating explanations for a *set of models*, the robot is essentially trying to cater to multiple human models at the same time. We posit then that the same approaches can be adopted to situations when there are multiple humans in the loop instead of a single human whose model is not known with certainty. Similarly as before, computing separate explanations (Chakraborti et al. 2017) for each agent can result in situations where the explanations computed for individual models independently are not consistent across the all the possible target domains. In the case of multiple teammates being explained to, this may cause confusion and loss of trust. Thus *conformant explanations* introduced above can find useful applications in dealing with not only model uncertainty but also model multiplicity.

In order to do this, from the set of target human mental models we construct an annotated model so that the *preconditions and effects that appear in all target models become necessary ones, and those that appear in just a subset are possible ones*. As before, we find a single explanation that is a satisfactory explanation for the entire set of models, without having to iterate the standard MRP process over all possible models while coming up with an explanation that can satisfy all of them and thus establish common ground.

Of course, while the explanation generation technique itself might be equivalent, the process of explaining to the humans themselves might be different depending on the setup. For example, while in the case of model uncertainty, the safest approach might be to generate explanations that work for the largest set of possible models, in scenarios with multiple explainees, the robot may have to decide, whether it needs to save computational and communication time by generating one explanation to fit all models, or if it needs to tailor the explanation to each human. This choice may depend on the particular domain and the nature of the teaming relationship with the human.

Demonstration on the USAR domain

We go back to our use case, now with two human teammates, one external and one internal. A video of the demonstration is available at https://youtu.be/hlPTmggRTQA. The robot is now positioned at P1 and is expected to collect data from location P5. Before the robot can perform its surveillance action, it needs to obtain a set of tools from the internal human agent. The human agent is initially located at P10 and is capable of traveling to reachable locations to meet the robot for the handover. Here the external commander incorrectly believes that the path from P1 to P9 is clear and while the one from P2 to P3 is closed. The internal human agent, on the other hand, not only believes in the mistakes mentioned above but is also under the assumption that the path from P4 to P5 is unsurpassable. Due to these different initial states, each of these agents ends up generating a different optimal plan. The plan expected by the external commander requires the robot to move to location P10 (via P9) to meet the human. After collecting the package from the internal agent, the commander expects it to set off to P5 via P4. The internal agent, on the other hand, believes that he needs to travel to P9 to hand over the package. As he believes that the corridor from P4 to P5 is blocked, he expects the robot to take the longer route to P5 through P6, P7, and P8 (marked in orange). Finally, the optimal plan for the robot (marked in blue) involves the robot meeting the human at P4 on its way to P5. Using MEGA*-Conformant, we find the smallest explanation, which can explain this plan to both humans.
Table 1: Runtime and solution size for the algorithms introduced in the paper.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Problem</th>
<th>Conformant explanations</th>
<th>Conditional Explanations</th>
<th>Anytime Explanations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Question Size</td>
<td>Explanation Size</td>
<td>Time (secs)</td>
</tr>
<tr>
<td></td>
<td>p1</td>
<td>–</td>
<td>3 (6)</td>
<td>134.84</td>
</tr>
<tr>
<td>Blockworld</td>
<td>p2</td>
<td>–</td>
<td>1 (1)</td>
<td>1.64</td>
</tr>
<tr>
<td></td>
<td>p3</td>
<td>–</td>
<td>2 (3)</td>
<td>20.56</td>
</tr>
<tr>
<td></td>
<td>p4</td>
<td>–</td>
<td>1 (2)</td>
<td>11.23</td>
</tr>
<tr>
<td></td>
<td>p5</td>
<td>–</td>
<td>3 (6)</td>
<td>130.63</td>
</tr>
<tr>
<td>Logistics</td>
<td>p1</td>
<td>–</td>
<td>2 (4)</td>
<td>62.30</td>
</tr>
<tr>
<td></td>
<td>p2</td>
<td>–</td>
<td>2 (5)</td>
<td>61.45</td>
</tr>
<tr>
<td></td>
<td>p3</td>
<td>–</td>
<td>3 (5)</td>
<td>246.23</td>
</tr>
<tr>
<td></td>
<td>p4</td>
<td>–</td>
<td>2 (5)</td>
<td>54.79</td>
</tr>
<tr>
<td></td>
<td>p5</td>
<td>–</td>
<td>2 (5)</td>
<td>59.87</td>
</tr>
<tr>
<td>Rover</td>
<td>p1</td>
<td>–</td>
<td>2 (2)</td>
<td>3.83</td>
</tr>
<tr>
<td></td>
<td>p2</td>
<td>–</td>
<td>2 (3)</td>
<td>26.93</td>
</tr>
<tr>
<td></td>
<td>p3</td>
<td>–</td>
<td>2 (3)</td>
<td>99.01</td>
</tr>
<tr>
<td></td>
<td>p4</td>
<td>–</td>
<td>3 (4)</td>
<td>102.56</td>
</tr>
<tr>
<td></td>
<td>p5</td>
<td>–</td>
<td>1 (2)</td>
<td>14.87</td>
</tr>
</tbody>
</table>

Table 2: Runtime for MEGA*-Conformant and the time needed to run MCE for every member of the completion set.

<table>
<thead>
<tr>
<th># of models</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>10.95</td>
<td>41.71</td>
<td>195.81</td>
<td>936.30</td>
</tr>
<tr>
<td>MEGA*-Conformant</td>
<td>11.11</td>
<td>37.01</td>
<td>117.26</td>
<td>291.88</td>
</tr>
</tbody>
</table>

In this particular case, since the models differ from each other with respect to their initial states, the initial state of the corresponding annotated model, will be defined as

\[I_0 = \{(at_p1), (at_human_p10), ..., (clear_path_p10_p9), (clear_path_p9_p1)\} \]

\[I^+ = \{(clear_path_p4_p5), (collapsed_path_p4_p5)\} \]

where \(I^+ \) represents the state fluents that may or may not hold in human’s model. The corresponding initial states for \(M_{\text{min}} \) and \(M_{\text{max}} \) will be as follows –

\[I_{\text{max}} = \{(at_p1), (at_human_p10), ..., (clear_path_p10_p9), (clear_path_p9_p1), (clear_path_p4_p5), (collapsed_path_p4_p5)\} \]

\[I_{\text{min}} = \{(at_p1), (at_human_p10), ..., (clear_path_p10_p9), (clear_path_p9_p1)\} \]

MEGA*-Conformant generates the following explanation:

- `add-INIT-has-clear_path P4 P5`
- `remove-INIT-has-clear_path P1 P9`
- `add-INIT-has-clear_path P2 P3`

It is interesting to note that, while the last two model changes are equally relevant for both the agents, the first change is specifically designed to help the internal human agent. The first update helps convince the human that the robot can indeed reach the goal through P4, while the next two help convince both agents as to why it is possible and why the robot should meet at P4 rather than other locations.

Conclusion & Future Work

We showed how recently developed techniques for explanation generation as a model reconciliation process can be extended to account for multiple possible models of the explainee – this is useful both in cases where the model of the explainee is uncertain as well as there are many explainees to explain to. We demonstrated this with a robot involved in a typical USAR scenario with an external supervisor whose model of the environment might have drifted in course of time, as well as provided empirical evaluations of the trade-offs between different kinds (conformant versus conditional versus anytime) of such explanations.

Two immediate directions for future work are (1) developing more efficient methods for learning annotated human mental models; and (2) extending the algorithms to work with scenarios where the human mental model exists at a different level of abstraction from the robot model. For (1) it is unrealistic to have access to a large set of plan traces. So it would be interesting to investigate whether we can learn annotated models through data collected from less intrusive and more practical sources than in (Bryce, Benton, and Boldt 2016; Nguyen, Sreedharan, and Kambhampati 2017). There has been some recent work (Nikolaides et al. 2015; Hadfield-Menell et al. 2016) that aims to learn human mental models iteratively in course of interactions especially when there is uncertainty about human preferences. With regards to (2) one of the assumptions made by this work is that both the robot and the human represents the world at the same level of fidelity. In many cases, the human mental model may exist at an abstraction higher than that of the robot, depending on the domain (e.g. expert versus non-expert). Thus, it can be extremely useful to consider such differences during the explanation process (e.g. a doctor explaining symptoms to a patient versus a fellow doctor).
References